\(\int \cot ^2(c+d x) \csc ^2(c+d x) (a+a \sin (c+d x))^2 \, dx\) [281]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 73 \[ \int \cot ^2(c+d x) \csc ^2(c+d x) (a+a \sin (c+d x))^2 \, dx=-a^2 x+\frac {a^2 \text {arctanh}(\cos (c+d x))}{d}-\frac {a^2 \cot (c+d x)}{d}-\frac {a^2 \cot ^3(c+d x)}{3 d}-\frac {a^2 \cot (c+d x) \csc (c+d x)}{d} \]

[Out]

-a^2*x+a^2*arctanh(cos(d*x+c))/d-a^2*cot(d*x+c)/d-1/3*a^2*cot(d*x+c)^3/d-a^2*cot(d*x+c)*csc(d*x+c)/d

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.241, Rules used = {2952, 3554, 8, 2691, 3855, 2687, 30} \[ \int \cot ^2(c+d x) \csc ^2(c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {a^2 \text {arctanh}(\cos (c+d x))}{d}-\frac {a^2 \cot ^3(c+d x)}{3 d}-\frac {a^2 \cot (c+d x)}{d}-\frac {a^2 \cot (c+d x) \csc (c+d x)}{d}-a^2 x \]

[In]

Int[Cot[c + d*x]^2*Csc[c + d*x]^2*(a + a*Sin[c + d*x])^2,x]

[Out]

-(a^2*x) + (a^2*ArcTanh[Cos[c + d*x]])/d - (a^2*Cot[c + d*x])/d - (a^2*Cot[c + d*x]^3)/(3*d) - (a^2*Cot[c + d*
x]*Csc[c + d*x])/d

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2687

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 2691

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a*Sec[e +
 f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] - Dist[b^2*((n - 1)/(m + n - 1)), Int[(a*Sec[e + f*x])
^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integers
Q[2*m, 2*n]

Rule 2952

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 3554

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((b*Tan[c + d*x])^(n - 1)/(d*(n - 1))), x] - Dis
t[b^2, Int[(b*Tan[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \int \left (a^2 \cot ^2(c+d x)+2 a^2 \cot ^2(c+d x) \csc (c+d x)+a^2 \cot ^2(c+d x) \csc ^2(c+d x)\right ) \, dx \\ & = a^2 \int \cot ^2(c+d x) \, dx+a^2 \int \cot ^2(c+d x) \csc ^2(c+d x) \, dx+\left (2 a^2\right ) \int \cot ^2(c+d x) \csc (c+d x) \, dx \\ & = -\frac {a^2 \cot (c+d x)}{d}-\frac {a^2 \cot (c+d x) \csc (c+d x)}{d}-a^2 \int 1 \, dx-a^2 \int \csc (c+d x) \, dx+\frac {a^2 \text {Subst}\left (\int x^2 \, dx,x,-\cot (c+d x)\right )}{d} \\ & = -a^2 x+\frac {a^2 \text {arctanh}(\cos (c+d x))}{d}-\frac {a^2 \cot (c+d x)}{d}-\frac {a^2 \cot ^3(c+d x)}{3 d}-\frac {a^2 \cot (c+d x) \csc (c+d x)}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.58 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.92 \[ \int \cot ^2(c+d x) \csc ^2(c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {a^2 \left (24 c+24 d x+8 \cot \left (\frac {1}{2} (c+d x)\right )+6 \csc ^2\left (\frac {1}{2} (c+d x)\right )-24 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+24 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )-6 \sec ^2\left (\frac {1}{2} (c+d x)\right )-8 \csc ^3(c+d x) \sin ^4\left (\frac {1}{2} (c+d x)\right )+\frac {1}{2} \csc ^4\left (\frac {1}{2} (c+d x)\right ) \sin (c+d x)-8 \tan \left (\frac {1}{2} (c+d x)\right )\right )}{24 d} \]

[In]

Integrate[Cot[c + d*x]^2*Csc[c + d*x]^2*(a + a*Sin[c + d*x])^2,x]

[Out]

-1/24*(a^2*(24*c + 24*d*x + 8*Cot[(c + d*x)/2] + 6*Csc[(c + d*x)/2]^2 - 24*Log[Cos[(c + d*x)/2]] + 24*Log[Sin[
(c + d*x)/2]] - 6*Sec[(c + d*x)/2]^2 - 8*Csc[c + d*x]^3*Sin[(c + d*x)/2]^4 + (Csc[(c + d*x)/2]^4*Sin[c + d*x])
/2 - 8*Tan[(c + d*x)/2]))/d

Maple [A] (verified)

Time = 0.19 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.33

method result size
derivativedivides \(\frac {a^{2} \left (-\cot \left (d x +c \right )-d x -c \right )+2 a^{2} \left (-\frac {\cos ^{3}\left (d x +c \right )}{2 \sin \left (d x +c \right )^{2}}-\frac {\cos \left (d x +c \right )}{2}-\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2}\right )-\frac {a^{2} \left (\cos ^{3}\left (d x +c \right )\right )}{3 \sin \left (d x +c \right )^{3}}}{d}\) \(97\)
default \(\frac {a^{2} \left (-\cot \left (d x +c \right )-d x -c \right )+2 a^{2} \left (-\frac {\cos ^{3}\left (d x +c \right )}{2 \sin \left (d x +c \right )^{2}}-\frac {\cos \left (d x +c \right )}{2}-\frac {\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2}\right )-\frac {a^{2} \left (\cos ^{3}\left (d x +c \right )\right )}{3 \sin \left (d x +c \right )^{3}}}{d}\) \(97\)
parallelrisch \(-\frac {a^{2} \left (\cot ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )-\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-6 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+24 d x +9 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )-9 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+24 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{24 d}\) \(98\)
risch \(-a^{2} x +\frac {2 a^{2} \left (3 \,{\mathrm e}^{5 i \left (d x +c \right )}+6 i {\mathrm e}^{2 i \left (d x +c \right )}-2 i-3 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{3}}+\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d}\) \(105\)
norman \(\frac {\frac {a^{2} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {a^{2} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {a^{2}}{24 d}-\frac {a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}-\frac {11 a^{2} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d}-\frac {5 a^{2} \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}+\frac {5 a^{2} \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}+\frac {11 a^{2} \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d}+\frac {a^{2} \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {a^{2} \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d}-a^{2} x \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 a^{2} x \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-a^{2} x \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}-\frac {a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}\) \(274\)

[In]

int(cos(d*x+c)^2*csc(d*x+c)^4*(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(a^2*(-cot(d*x+c)-d*x-c)+2*a^2*(-1/2/sin(d*x+c)^2*cos(d*x+c)^3-1/2*cos(d*x+c)-1/2*ln(csc(d*x+c)-cot(d*x+c)
))-1/3*a^2/sin(d*x+c)^3*cos(d*x+c)^3)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 166 vs. \(2 (71) = 142\).

Time = 0.27 (sec) , antiderivative size = 166, normalized size of antiderivative = 2.27 \[ \int \cot ^2(c+d x) \csc ^2(c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {4 \, a^{2} \cos \left (d x + c\right )^{3} - 6 \, a^{2} \cos \left (d x + c\right ) - 3 \, {\left (a^{2} \cos \left (d x + c\right )^{2} - a^{2}\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) + 3 \, {\left (a^{2} \cos \left (d x + c\right )^{2} - a^{2}\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) + 6 \, {\left (a^{2} d x \cos \left (d x + c\right )^{2} - a^{2} d x - a^{2} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{6 \, {\left (d \cos \left (d x + c\right )^{2} - d\right )} \sin \left (d x + c\right )} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^4*(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/6*(4*a^2*cos(d*x + c)^3 - 6*a^2*cos(d*x + c) - 3*(a^2*cos(d*x + c)^2 - a^2)*log(1/2*cos(d*x + c) + 1/2)*sin
(d*x + c) + 3*(a^2*cos(d*x + c)^2 - a^2)*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) + 6*(a^2*d*x*cos(d*x + c)^2
 - a^2*d*x - a^2*cos(d*x + c))*sin(d*x + c))/((d*cos(d*x + c)^2 - d)*sin(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \cot ^2(c+d x) \csc ^2(c+d x) (a+a \sin (c+d x))^2 \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)**4*(a+a*sin(d*x+c))**2,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.14 \[ \int \cot ^2(c+d x) \csc ^2(c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {6 \, {\left (d x + c + \frac {1}{\tan \left (d x + c\right )}\right )} a^{2} - 3 \, a^{2} {\left (\frac {2 \, \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{2} - 1} + \log \left (\cos \left (d x + c\right ) + 1\right ) - \log \left (\cos \left (d x + c\right ) - 1\right )\right )} + \frac {2 \, a^{2}}{\tan \left (d x + c\right )^{3}}}{6 \, d} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^4*(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/6*(6*(d*x + c + 1/tan(d*x + c))*a^2 - 3*a^2*(2*cos(d*x + c)/(cos(d*x + c)^2 - 1) + log(cos(d*x + c) + 1) -
log(cos(d*x + c) - 1)) + 2*a^2/tan(d*x + c)^3)/d

Giac [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.93 \[ \int \cot ^2(c+d x) \csc ^2(c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 6 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 24 \, {\left (d x + c\right )} a^{2} - 24 \, a^{2} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) + 9 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {44 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 9 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 6 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - a^{2}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3}}}{24 \, d} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^4*(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/24*(a^2*tan(1/2*d*x + 1/2*c)^3 + 6*a^2*tan(1/2*d*x + 1/2*c)^2 - 24*(d*x + c)*a^2 - 24*a^2*log(abs(tan(1/2*d*
x + 1/2*c))) + 9*a^2*tan(1/2*d*x + 1/2*c) + (44*a^2*tan(1/2*d*x + 1/2*c)^3 - 9*a^2*tan(1/2*d*x + 1/2*c)^2 - 6*
a^2*tan(1/2*d*x + 1/2*c) - a^2)/tan(1/2*d*x + 1/2*c)^3)/d

Mupad [B] (verification not implemented)

Time = 9.45 (sec) , antiderivative size = 193, normalized size of antiderivative = 2.64 \[ \int \cot ^2(c+d x) \csc ^2(c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{4\,d}-\frac {a^2\,{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24\,d}-\frac {a^2\,{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{4\,d}+\frac {a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24\,d}-\frac {2\,a^2\,\mathrm {atan}\left (\frac {\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )+\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )-\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}-\frac {a^2\,\ln \left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}-\frac {3\,a^2\,\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8\,d}+\frac {3\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8\,d} \]

[In]

int((cos(c + d*x)^2*(a + a*sin(c + d*x))^2)/sin(c + d*x)^4,x)

[Out]

(a^2*tan(c/2 + (d*x)/2)^2)/(4*d) - (a^2*cot(c/2 + (d*x)/2)^3)/(24*d) - (a^2*cot(c/2 + (d*x)/2)^2)/(4*d) + (a^2
*tan(c/2 + (d*x)/2)^3)/(24*d) - (2*a^2*atan((cos(c/2 + (d*x)/2) + sin(c/2 + (d*x)/2))/(cos(c/2 + (d*x)/2) - si
n(c/2 + (d*x)/2))))/d - (a^2*log(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d - (3*a^2*cot(c/2 + (d*x)/2))/(8*d)
+ (3*a^2*tan(c/2 + (d*x)/2))/(8*d)